
Fitting the Nelson–Siegel–Svensson model
with Differential Evolution Package version 2.10-0

Enrico Schumann
es@enricoschumann.net

1 Introduction

In this tutorial we look into fitting the Nelson–Siegel–Svensson (NSS) model to data; for more
details, please see [Gilli et al., 2011]. Further information can be found in Gilli et al. [2010] and
Gilli and Schumann [2010].

We start by attaching the package. Since we will use a stochastic technique for optimisation,
we should be running several restarts (see Gilli et al., 2011, Chapter 12, for a discussion). The
variable nRuns sets the number of restarts for the examples to come. We set it to only two here to
keep the build-time of the package acceptable; increase it to check the stochastics of the solutions.
We set a seed to make the computations reproducible.

> require("NMOF")

> nRuns <- 2L

> set.seed(112233)

2 Fitting the NS model to given zero rates

The NS model

We create a ‘true’ yield curve yM with given parameters betaTRUE. The times-to-payment, measured
in years, are collected in the vector tm.

> tm <- c(c(1, 3, 6, 9)/12, 1:10)

> betaTRUE <- c(6, 3, 8, 1)

> yM <- NS(betaTRUE, tm)

> par(ps = 11, bty = "n", las = 1, tck = 0.01,

mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))

> plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")

0 2 4 6 8 10
7.0

7.5

8.0

8.5

9.0

9.5

10.0

maturities in years

yi
el

ds
 in

 %

The aim is to fit a smooth curve through these points. Since we have used the model to create
the points, we should be able to obtain a perfect fit. We start with the objective function OF. It takes

1

two arguments: param, which is a candidate solution (a numeric vector), and the list data, which
holds all other variables. It returns the maximum absolute difference between a vector of observed
(‘market’) yields yM, and the model’s yields for parameters param.

> OF <- function(param, data) {

y <- data$model(param, data$tm)

maxdiff <- y - data$yM

maxdiff <- max(abs(maxdiff))

if (is.na(maxdiff))

maxdiff <- 1e10

maxdiff

}

We have a added a crude but effective safeguard against ‘strange’ parameter values that lead to
NA values: the objective function returns a large positive value. We minimise, and hence parameters
that produce NA values are marked as bad.

In this first example, we set up data as follows:

> data <- list(yM = yM,

tm = tm,

model = NS,

ww = 0.1,

min = c(0,-15,-30, 0),

max = c(15, 30, 30,10))

We add a model (a function; in this case NS) that describes the mapping from parameters to a
yield curve, and vectors min and max that we will later use as constraints. ww is a penalty weight,
explained below.

OF will take a candidate solution param, transform this solution via data$model into yields, and
compare these yields with yM, which here means to compute the maximum absolute difference.

> param1 <- betaTRUE ## the solution...

> OF(param1, data) ## ...gives 0

[1] 0

> param2 <- c(5.7, 3, 8, 2) ## anything else

> OF(param2, data) ## ... gives a postive number

[1] 0.97686

We can also compare the solutions in terms of yield curves.

> par(ps = 11, bty = "n", las = 1, tck = 0.01,

mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))

> plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")

> lines(tm, NS(param1, tm), col = "blue")

> lines(tm, NS(param2, tm), col = "red")

> legend(x = "topright",

legend = c("true yields", "param1", "param2"),

col = c("black", "blue", "red"),

pch = c(1, NA, NA), lty = c(0, 1, 1))

2

0 2 4 6 8 10
7.0

7.5

8.0

8.5

9.0

9.5

10.0

maturities in years

yi
el

ds
 in

 %
true yields
param1
param2

We generally want to obtain parameters such that certain constraints are met. We include these
through a penalty function.

> penalty <- function(mP, data) {

minV <- data$min

maxV <- data$max

ww <- data$ww

if larger than maxV, element in A is positiv

A <- mP - as.vector(maxV)

A <- A + abs(A)

if smaller than minV, element in B is positiv

B <- as.vector(minV) - mP

B <- B + abs(B)

beta 1 + beta2 > 0

C <- ww*((mP[1L,] + mP[2L,]) - abs(mP[1L,] + mP[2L,]))

A <- ww * colSums(A + B) - C

A

}

We already have data, so let us see what the function does to solutions that violate a constraint.
Suppose we have a population mP of three solutions (the m in mP is to remind us that we deal with a
matrix).

> param1 <- c(6, 3, 8, -1)

> param2 <- c(6, 3, 8, 1)

> param3 <- c(-1, 3, 8, 1)

> mP <- cbind(param1,param2,param3)

> rownames(mP) <- c("b1","b2","b3","lambda")

> mP

param1 param2 param3

b1 6 6 -1

b2 3 3 3

b3 8 8 8

lambda -1 1 1

The first and the third solution violate the constraints. In the first solution, λ is negative; in the
third solution, β1 is negative.

> penalty(mP,data)

3

param1 param2 param3

0.2 0.0 0.2

The parameter ww controls how heavily we penalise.

> data$ww <- 0.5

> penalty(mP,data)

param1 param2 param3

1 0 1

For valid solutions, the penalty should be zero.

> param1 <- c(6, 3, 8, 1)

> param2 <- c(6, 3, 8, 1)

> param3 <- c(2, 3, 8, 1)

> mP <- cbind(param1, param2, param3)

> rownames(mP) <- c("b1","b2","b3","lambda")

> penalty(mP, data)

param1 param2 param3

0 0 0

Note that penalty works on the complete population at once; there is no need to loop over the
solutions.

So we can run a test. We start by defining the parameters of DE. Note in particular that we
pass the penalty function, and that we set loopPen to FALSE.

> algo <- list(nP = 100L, ## population size

nG = 500L, ## number of generations

F = 0.50, ## step size

CR = 0.99, ## prob. of crossover

min = c(0,-15,-30, 0),

max = c(15, 30, 30,10),

pen = penalty,

repair = NULL,

loopOF = TRUE, ## loop over popuation? yes

loopPen = FALSE, ## loop over popuation? no

loopRepair = TRUE, ## loop over popuation? yes

printBar = FALSE)

DEopt is then called with the objective function OF, the list data, and the list algo.

> sol <- DEopt(OF = OF, algo = algo, data = data)

Differential Evolution.

Best solution has objective function value 0 ;

standard deviation of OF in final population is 3.0455e-16 .

To check whether the objective function works properly, we compare the maximum error with
the returned objective function value – they should be the same.

> max(abs(data$model(sol$xbest, tm) - data$model(betaTRUE, tm)))

4

[1] 0

> sol$OFvalue

[1] 0

As a benchmark, we run the function nlminb from the stats package. This is not a fair test:
nlminb is not appropriate for such problems. (But then, if we found that it performed better than
DE, we would have a strong indication that something is wrong with our implementation of DE.)
We use a random starting value s0.

> s0 <- algo$min + (algo$max - algo$min) * runif(length(algo$min))

> sol2 <- nlminb(s0, OF, data = data,

lower = data$min,

upper = data$max,

control = list(eval.max = 50000L,

iter.max = 50000L))

Again, we compare the returned objective function value and the maximum error.

> max(abs(data$model(sol2$par, tm) - data$model(betaTRUE,tm)))

[1] 1.5787e-07

> sol2$objective

[1] 1.5787e-07

To compare our two solutions (DE and nlminb), we can plot them together with the true yields
curve. But it is important to stress that the results of both algorithms are stochastic: in the case
of DE because it deliberately uses randomness; in the case of nlminb because we set the starting
value randomly. To get more meaningful results we should run both algorithms several times. To
keep the build-time of the vignette down, we only run both methods once. But increase nRuns for
more restarts.

> par(ps = 11, bty = "n", las = 1, tck = 0.01,

mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))

> plot(tm, yM, xlab = "maturities in years",

ylab = "yields in %")

> algo$printDetail <- FALSE

> for (i in seq_len(nRuns)) {

sol <- DEopt(OF = OF, algo = algo, data = data)

lines(tm, data$model(sol$xbest,tm), col = "blue")

s0 <- algo$min + (algo$max-algo$min) * runif(length(algo$min))

sol2 <- nlminb(s0, OF, data = data,

lower = data$min,

upper = data$max,

control = list(eval.max = 50000L,

iter.max = 50000L))

lines(tm,data$model(sol2$par,tm), col = "darkgreen", lty = 2)

}

> legend(x = "topright", legend = c("true yields", "DE", "nlminb"),

col = c("black","blue","darkgreen"),

pch = c(1, NA, NA), lty = c(0, 1, 2))

5

0 2 4 6 8 10
7.0

7.5

8.0

8.5

9.0

9.5

10.0

maturities in years

yi
el

ds
 in

 %
true yields
DE
nlminb

It is no error that there tpyically appears to be only one curve for DE: there are, in fact, nRuns
lines, but they are printed on top of each other.

Other constraints

The parameter constraints on the NS (and NSS) model are to make sure that the resulting zero
rates are nonnegative. But in fact, they do not guarantee positive rates.

> tm <- seq(1, 10, length.out = 100) ## 1 to 10 years

> betaTRUE <- c(3, -2, -8, 1.5) ## 'true' parameters

> yM <- NS(betaTRUE, tm)

> par(ps = 11, bty = "n", las = 1, tck = 0.01,

mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))

> plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")

> abline(h = 0)

2 4 6 8 10

0.0

0.5

1.0

1.5

maturities in years

yi
el

ds
 in

 %

This is really a made-up example, but nevertheless we may want to include safeguards against
such parameter vectors: we could include just one constraint that all rates are greater than zero.
This can be done, again, with a penalty function.

> penalty2 <- function(param, data) {

y <- data$model(param, data$tm)

maxdiff <- abs(y - abs(y))

sum(maxdiff) * data$ww

}

Check:

6

> penalty2(c(3, -2, -8, 1.5),data)

[1] 0.86343

This penalty function only works for a single solution, so it is actually simplest to write it
directly into the objective function.

> OFa <- function(param,data) {

y <- data$model(param,data$tm)

aux <- y - data$yM

res <- max(abs(aux))

compute the penalty

aux <- y - abs(y) ## aux == zero for nonnegative y

aux <- -sum(aux) * data$ww

res <- res + aux

if (is.na(res)) res <- 1e10

res

}

So just as a numerical test: suppose the above parameters were true, and interest rates were nega-
tive.

> algo$pen <- NULL; data$yM <- yM; data$tm <- tm

> par(ps = 11, bty = "n", las = 1, tck = 0.01,

mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))

> plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")

> abline(h = 0)

> sol <- DEopt(OF = OFa, algo = algo, data = data)

> lines(tm,data$model(sol$xbest,tm), col = "blue")

> legend(x = "topleft", legend = c("true yields", "DE (constrained)"),

col = c("black", "blue"),

pch = c(1, NA, NA), lty = c(0, 1, 2))

2 4 6 8 10

0.0

0.5

1.0

1.5

maturities in years

yi
el

ds
 in

 %

true yields
DE (constrained)

3 Fitting the NSS model to given zero rates

There is little that we need to change if we want to use the NSS model instead. We just have
to pass a different model to the objective function (and change the min/max-vectors). An example
follows. Again, we fix true parameters and try to recover them.

7

> tm <- c(c(1, 3, 6, 9)/12, 1:10)

> betaTRUE <- c(5,-2,5,-5,1,6)

> yM <- NSS(betaTRUE, tm)

The lists data and algo are almost the same as before; the objective function stays exactly the
same.

> data <- list(yM = yM,

tm = tm,

model = NSS,

min = c(0,-15,-30,-30, 0,5),

max = c(15, 30, 30, 30, 5, 10),

ww = 1)

> algo <- list(nP = 100L,

nG = 500L,

F = 0.50,

CR = 0.99,

min = c(0,-15,-30,-30, 0,5),

max = c(15, 30, 30, 30, 5, 10),

pen = penalty,

repair = NULL,

loopOF = TRUE,

loopPen = FALSE,

loopRepair = TRUE,

printBar = FALSE,

printDetail = FALSE)

It remains to run the algorithm. (Again, we check the returned objective function value.)

> sol <- DEopt(OF = OF, algo = algo, data = data)

> max(abs(data$model(sol$xbest, tm) - data$model(betaTRUE, tm)))

[1] 7.9936e-15

> sol$OFvalue

[1] 7.9936e-15

We compare the results with nlminb.

> s0 <- algo$min + (algo$max - algo$min) * runif(length(algo$min))

> sol2 <- nlminb(s0,OF,data = data,

lower = data$min,

upper = data$max,

control = list(eval.max = 50000L,

iter.max = 50000L))

> max(abs(data$model(sol2$par, tm) - data$model(betaTRUE, tm)))

[1] 1.0051

> sol2$objective

[1] 1.0051

Finally, we compare the yield curves resulting from several runs. (Recall that the number of
runs is controlled by nRuns, which we have set initially.)

8

> par(ps = 11, bty = "n", las = 1, tck = 0.01,

mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))

> plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")

> for (i in seq_len(nRuns)) {

sol <- DEopt(OF = OF, algo = algo, data = data)

lines(tm, data$model(sol$xbest,tm), col = "blue")

s0 <- algo$min + (algo$max - algo$min) * runif(length(algo$min))

sol2 <- nlminb(s0, OF, data = data,

lower = data$min,

upper = data$max,

control = list(eval.max = 50000L,

iter.max = 50000L))

lines(tm, data$model(sol2$par,tm), col = "darkgreen", lty = 2)

}

> legend(x = "topright", legend = c("true yields", "DE", "nlminb"),

col = c("black","blue","darkgreen"),

pch = c(1,NA,NA), lty = c(0,1,2), bg = "white")

0 2 4 6 8 10

3.5

4.0

4.5

5.0

maturities in years

yi
el

ds
 in

 %

true yields
DE
nlminb

4 Fitting the NSS model to given bond prices

The section was removed to reduce the build-time of the package. The examples were moved
to the ‘NMOF manual’ (see http://enricoschumann.net/NMOF.htm). The code is in the subdi-
rectory NMOFex; to show the code in R, you can use the function system.file.

> whereToLook <- system.file("NMOFex/NMOFman.R", package = "NMOF")

> file.show(whereToLook, title = "NMOF examples")

5 Fitting the NSS model to given yields-to-maturity

The section was removed to reduce the build-time of the package. The examples were moved
to the ‘NMOF manual’ (see http://enricoschumann.net/NMOF.htm). The code is in the subdi-
rectory NMOFex; to show the code in R, you can use the function system.file.

9

http://enricoschumann.net/NMOF.htm
http://enricoschumann.net/NMOF.htm

> whereToLook <- system.file("NMOFex/NMOFman.R", package = "NMOF")

> file.show(whereToLook, title = "NMOF examples")

References

Manfred Gilli and Enrico Schumann. A Note on ‘Good Starting Values’ in Numerical Optimi-
sation. COMISEF Working Paper Series No. 44, 2010. available from http://comisef.eu/?q=

working papers.

Manfred Gilli, Stefan Große, and Enrico Schumann. Calibrating the Nelson–Siegel–Svensson
model. COMISEF Working Paper Series No. 31, 2010. available from http://comisef.eu/?q=

working papers.

Manfred Gilli, Dietmar Maringer, and Enrico Schumann. Numerical Methods and Optimization
in Finance. Elsevier/Academic Press, 2011. URL http://enricoschumann.net/NMOF.

10

http://comisef.eu/?q=working_papers
http://comisef.eu/?q=working_papers
http://comisef.eu/?q=working_papers
http://comisef.eu/?q=working_papers
http://enricoschumann.net/NMOF

	Introduction
	Fitting the NS model to given zero rates
	Fitting the NSS model to given zero rates
	Fitting the NSS model to given bond prices
	Fitting the NSS model to given yields-to-maturity

