
Package: neighbours (via r-universe)
September 15, 2024

Type Package

Title Neighbourhood Functions for Local-Search Algorithms

Version 0.1-3

Date 2023-09-21

Maintainer Enrico Schumann <es@enricoschumann.net>

Description Neighbourhood functions are key components of local-search
algorithms such as Simulated Annealing or Threshold Accepting.
These functions take a solution and return a slightly-modified
copy of it, i.e. a neighbour. The package provides a function
neighbourfun() that constructs such neighbourhood functions,
based on parameters such as admissible ranges for elements in a
solution. Supported are numeric and logical solutions. The
algorithms were originally created for portfolio-optimisation
applications, but can be used for other models as well.
Several recipes for neighbour computations are taken from
``Numerical Methods and Optimization in Finance'' by M. Gilli, D.
Maringer and E. Schumann (2019, ISBN:978-0128150658).

License GPL-3

URL http://enricoschumann.net/R/packages/neighbours/ ,

https://sr.ht/~enricoschumann/neighbours/ ,

https://github.com/enricoschumann/neighbours

Depends R (>= 3.3)

Suggests NMOF, quadprog, tinytest

Repository https://enricoschumann.r-universe.dev

RemoteUrl https://github.com/enricoschumann/neighbours

RemoteRef HEAD

RemoteSha 8e39b27f391092833e9934e8adc8e42c55fa9750

1

http://enricoschumann.net/R/packages/neighbours/
https://sr.ht/~enricoschumann/neighbours/
https://github.com/enricoschumann/neighbours

2 compare_vectors

Contents

compare_vectors . 2
neighbourfun . 3
next_subset . 6

Index 8

compare_vectors Compare Vectors

Description

Compare numeric or logical vectors.

Usage

compare_vectors(..., sep = "", diff.char = "|")

Arguments

... vectors of the same length

sep a string

diff.char a single character

Details

The function compares vectors with one another. The main purpose is to print a useful representa-
tion of differences (and return differences, usually invisibly).

The function is still experimental and will likely change.

Value

depends on how the function is called; typically a list

Author(s)

Enrico Schumann

See Also

neighbourfun

neighbourfun 3

Examples

x <- runif(5) > 0.5
nb <- neighbourfun(type = "logical")

compare_vectors(x, nb(x))
01010
|
00010
The vectors differ in 1 place.

nb <- neighbourfun(type = "logical", stepsize = 2)
compare_vectors(x, nb(x))
01010
| |
11011
The vectors differ in 2 places.

neighbourfun Neighbourhood Functions

Description

Create neighbourhood functions, including constraints.

Usage

neighbourfun(min = 0, max = 1, kmin = NULL, kmax = NULL,
stepsize, sum = TRUE, random = TRUE, update = FALSE,
type = "numeric", active = TRUE, length = NULL,
A = NULL, ...)

neighborfun (min = 0, max = 1, kmin = NULL, kmax = NULL,
stepsize, sum = TRUE, random = TRUE, update = FALSE,
type = "numeric", active = TRUE, length = NULL,
A = NULL, ...)

Arguments

min a numeric vector. A scalar is recycled to length, if specified.

max a numeric vector. A scalar is recycled to length, if specified.

kmin NULL or integer: the minimum number of TRUE values in logical vectors

kmax NULL or integer: the maximum number of TRUE values in logical vectors

stepsize numeric. For numeric neighbourhoods, the (average) stepsize. For logical neigh-
bourhoods, the number of elements that are changed.

sum logical or numeric. If specified and of length 1, only zero-sum changes will be
applied to a numeric vector (i.e. the sum over all elements in a solution remains
unchanged).

4 neighbourfun

random logical. Should the stepsize be random or fixed?

active a vector: either the positions of elements that may be changed, or a logical
vector. The default is a length-one logical vector, which means that all elements
may be changed.

update either logical (the default FALSE) or a string, specifying the type of updating.
Currently supported is "Ax", in which case the matrix A must be specified. See
Examples.

A a numeric matrix

type string: either "numeric", "logical" or "permute"

length integer: the length of a vector

... other arguments

Details

The function returns a closure with arguments x and ..., which can be used for local-search algo-
rithms.

Three types of solution vectors are supported:

numeric a neighbour is created by adding or subtracting typically small numbers to random ele-
ments of a solution

logical TRUE and FALSE values are switched

permute elements of x are exchanged. Works with atomic and generic vectors (aka lists).

neighborfun is an alias for neighbourfun.

Value

A function (closure) with arguments x and

Note on algorithms

There are different strategies to implement constraints in local-search algorithms, and ultimately
only experiments show which strategy works well for a given problem class. The algorithms used
by neighbourfun always require a feasible initial solution, and then remain within the space of
feasible solutions. See Gilli et al. (2019), Section 12.5, for a brief discussion.

Author(s)

Maintainer: Enrico Schumann <es@enricoschumann.net>

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier.
doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual).
http://enricoschumann.net/NMOF.htm#NMOFmanual

https://doi.org/10.1016/C2017-0-01621-X
http://enricoschumann.net/NMOF.htm#NMOFmanual

neighbourfun 5

See Also

implementations of algorithms of the local-search family, such as Simulated Annealing (SAopt in
NMOF) or Threshold Accepting (TAopt in NMOF)

Examples

a LOGICAL neighbourhood
x <- logical(8)
x[1:3] <- TRUE

N <- neighbourfun(type = "logical", kmin = 3, kmax = 3)

cat(ifelse(x, "o", "."), " | initial solution ",
sep = "", fill = TRUE)

for (i in 1:5) {
x <- N(x)
cat(ifelse(x, "o", "."), sep = "", fill = TRUE)

}
ooo..... | initial solution
oo....o.
o...o.o.
o.o.o...
oo..o...
oo....o.

UPDATING a numeric neighbourhood
the vector is 'x' is used in the product 'Ax'
A <- array(rnorm(100*25), dim = c(100, 25))
N <- neighbourfun(type = "numeric",

stepsize = 0.05,
update = "Ax",
A = A)

x <- rep(1/25, 25)
attr(x, "Ax") <- A %*% x
for (i in 1:10)

x <- N(x, A)

all.equal(A %*% x, attr(x, "Ax"))

a PERMUTATION neighbourhood
x <- 1:5

N <- neighbourfun(type = "permute")
N(x)
[1] 1 2 5 4 3
^ ^

N <- neighbourfun(type = "permute", stepsize = 5)

6 next_subset

N(x)

'x' is not restricted to integers
x <- letters[1:5]
N(x)

a useful way to STORE/SPECIFY PARAMETERS, e.g. in config files
settings <- list(type = "numeric",

min = 0.0,
max = 0.2)

do.call(neighbourfun, settings)

next_subset Select Next Subset

Description

Select next subset of size k from a set of size n.

Usage

next_subset(a, n, k)

Arguments

a a numeric vector (integers)

n an integer: the size of the set to choose from

k an integer: the subset size

Details

Given a subset a of size k taken from a set of size n, compute the next subset by alphabetical order.

Uses algorithm NEXKSB of Nijenhuis and Wilf (1975).

Value

a numeric vector (the next subset) or NULL (when there is no next subset)

Author(s)

Enrico Schumann

References

Nijenhuis, A. and Wilf, H. S. (1975) Combinatorial Algorithms for Computers and Calculators.
Academic Press.

next_subset 7

See Also

choose computes the number of combinations
combn creates all combinations
expand.grid

Examples

n <- 4
k <- 2
t(combn(n, k))
[,1] [,2]
[1,] 1 2
[2,] 1 3
[3,] 1 4
[4,] 2 3
[5,] 2 4
[6,] 3 4

a <- 1:k
print(a)
while (!is.null(a))

print(a <- next_subset(a, n = n, k = k))
[1] 1 2
[1] 1 3
[1] 1 4
[1] 2 3
[1] 2 4
[1] 3 4

Index

∗ optimize
neighbourfun, 3

choose, 7
combn, 7
compare_vectors, 2

expand.grid, 7

FALSE, 4

neighborfun (neighbourfun), 3
neighbors (neighbourfun), 3
neighbourfun, 2, 3, 4
neighbours (neighbourfun), 3
neighbours-package (neighbourfun), 3
next_subset, 6
NULL, 3, 6

SAopt, 5

TAopt, 5
TRUE, 3, 4

8

	compare_vectors
	neighbourfun
	next_subset
	Index

